词语解释
条师[ tiáo shī ]
⒈ 善写呈文的师爷。
引证解释
⒈ 善写呈文的师爷。
引鄢国培 《巴山月》第七章二:“想不到 黄玉庵 这次横了心,连这位他平时言听计从、足智多谋的条师 严江贺 的转圜也听不进。”
分字解释
最读网现代词语例句
🧠 深度学习入门课
📚 第一步:安装好Python环境
```bash
pip install tensorflow keras matplotlib seaborn numpy pandas scikit-learn pillow opencv-python
```
🛠️ 第二步:导入必要的库
```python
import tensorflow as tf
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import cv2
import os
```
💻 制作数据集
🔍 加载并预处理数据
```python
data = pd.read_csv('path_to_your_data.csv')
X = data.drop(columns=['target_column'])
y = data['target_column']
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3, random_state=42)
```
🤖 开始训练模型
```python
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(64, activation='relu', input_shape=(X.shape[1],)),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(1, activation='sigmoid')
])
model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])
history = model.fit(
X_train,
y_train,
epochs=20,
validation_data=(X_test, y_test),
batch_size=32
)
plt.plot(history.history['loss'], label='Training Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.legend()
plt.show()
plt.plot(history.history['accuracy'], label='Training Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
plt.legend()
plt.show()
```
🌟 结果展示
```python
假设我们的模型已经训练完成
predictions = model.predict(X_test)
print(predictions[:5]) 输出前五条预测结果
```
希望这些例子能帮助你理解如何使用 TensorFlow 和 Keras 在 Python 中进行深度学习。记得根据你的具体需求调整代码哦!